Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zi-Liang Wang^a* and Lin-Heng Wei^b

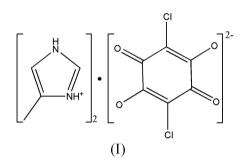
^aCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China, and ^bCollege of Environment and Planning, Henan University, Kaifeng 475001, People's Republic of China

Correspondence e-mail: zlwang@henu.edu.cn

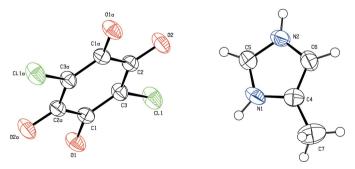
Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.043 wR factor = 0.113 Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


A hydrogen-bonded supramolecular complex between the chloranilic acid dianion (CA) and the 4-methylimidazole cation

The title salt, bis(4-methylimidazolium) chloranilate, $2C_4H_7N_2^+ \cdot C_6Cl_2O_4^{2-}$, is composed of a centrosymmetric chloranilate (CA) dianion and two 4-methylimidazolium cations, which are held together by intermolecular hydrogen-bond interactions and ultimately construct a two-dimensional supramolecular complex.


Received 18 August 2005 Accepted 24 August 2005 Online 7 September 2005

Comment

Hydrogen bonding, due to its strong directing capability of organizing molecules into supramolecular aggregates, is considered as one of the most important strategies for controlling molecular self-assembly during crystallization (Rodríguez-Martín *et al.*, 2002). In recent decades, hydrogen bonds have been used to generate supramolecular assemblies and some novel related complexes have been reported (Aakeröy *et al.*, 1998; Qin *et al.*, 2001). Here, we report the supramolecular complex (4-methylimidazole)₂(CA), (I).

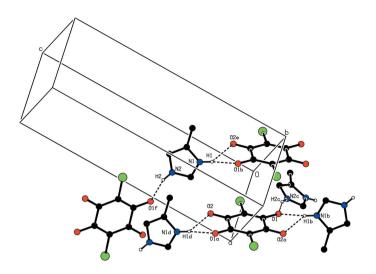

The complex unit of (I) consists of a doubly deprotonated CA^{2-} anion and two singly protonated 2-methylimidazole cations, as a result of transfer of two protons (Fig. 1). The ions are held together by a complicated hydrogen-bond network forming a supramolecular complex, in which four O atoms of

Figure 1 The cation and anion of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (a) 2 - x, 1 - y, -z.]

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

A perspective view of the crystal packing in the unit cell, showing the hydrogen bonding (dashed lines). H atoms not involved in the hydrogen bonds have been omitted for clarity. [Symmetry codes: (a) 2 - x, 1 - y, -z; (b) 1 - x, 1 - y, -z; (c) $-\frac{1}{2} + x$, $\frac{1}{2} - y$, $-\frac{1}{2} + z$; (d) 1 + x, y, z; (e) -1 + x, y, z; (f) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$.]

 CA^{2-} act as acceptors and imidazolium NH act as donors in $N-H\cdots O$ hydrogen bonds (Fig. 2 and Table 1). Each O atom forms double hydrogen bonds with two adjacent cations. As shown in Fig. 2, one anion interacts with six cations *via* hydrogen bonds. In contrast, each cation interacts with three neighbouring anions, to build the two-dimensional supramolecular framework.

Experimental

All reagents and solvents were used as obtained without further purification. Chloranilic acid (1 mmol, 0.21 g) and 4-methylimidazole (1 mmol, 0.081 g) were dissolved in an ammonia solution (10 ml, 30%), and the mixture was stirred for about 20 min at room temperature. The resulting clear red solution was kept in air and, after slow evaporation of the solvent over a period of a week, red **needle** crystals of (I) formed at the bottom of the vessel.

Crystal data

$2C_4H_7N_2^+ \cdot C_6Cl_2O_4^{2-}$	$D_x = 1.513 \text{ Mg m}^{-3}$
$M_r = 373.20$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 1642
a = 5.2739 (10) Å	reflections
$b = 9.5018 (17) \text{\AA}$	$\theta = 2.5 - 24.6^{\circ}$
c = 16.560 (3) Å	$\mu = 0.42 \text{ mm}^{-1}$
$\beta = 99.157 (3)^{\circ}$ V = 819.3 (3) Å ³	T = 292 (2) K
V = 819.3 (3) Å ³	Needle, red
<i>Z</i> = 2	$0.40 \times 0.20 \times 0.10 \ \mathrm{mm}$

Data collection

Bruker SMART APEX CCD area- detector diffractometer ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003) $T_{\min} = 0.849, T_{\max} = 0.959$ 4373 measured reflections	1620 independent reflections 1373 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 26.0^{\circ}$ $h = -6 \rightarrow 4$ $k = -11 \rightarrow 11$ $l = -18 \rightarrow 20$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.113$ S = 1.07 1620 reflections 111 parameters	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0599P)^{2} + 0.1001P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.28 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97

Table 1Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.86	1.98	2.825 (2)	167
0.86	2.36	2.867 (2)	118
0.86	1.87	2.703 (2)	162
	0.86 0.86	0.86 1.98 0.86 2.36	0.86 1.98 2.825 (2) 0.86 2.36 2.867 (2)

(Sheldrick, 1997) Extinction coefficient: 0.012 (2)

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x - 1, y + 1, z.

All H atoms were placed in idealized positions, with C– H(methyl) = 0.96 Å, other C–H = 0.93 Å and N–H = 0.86 Å, and included in the refinement in the riding-model approximation, with $U_{iso}(H) = 1.5U_{eq}$ (methyl C) or $1.2U_{eq}$ (other carrier atoms).

Data collection: *SMART* (Bruker 2001); cell refinement: *SAINT-Plus* (Bruker 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

The authors thank the Scientific Research Startup Foundation of Henan University, China, for financial support.

References

Aakeröy, C. B. & Beatty, A. M. (1998). J. Chem. Soc. Chem. Commun. pp. 1067–1068.

Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.

Qin, Z., Jeannings, M. C. & Puddephatt, R. J. (2001). Inorg. Chem. 40, 6220– 6228.

Rodríguez-Martín, Y., Sanchiz, J., Ruiz-Peŕez, C., Lloret F. & Julve, M. (2002). *CrystEngComm*, 4, 631–637.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.